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Abstract
SjfX(x/HJ)-PifX(x/Hi)> 0 , ifj, i=l,...,n (1)

This paper presents the method of potential func-
tions using B-splines as potential functions in the left side of (1)
the estimation of likelihood functions (probabil- gji(x)u Pjfx(x/Hj)-Pifx(x/Hi) (2)
ity density functions conditioned on pattern
classes) or of the resulting discriminant func- is called a discriminant function. Since (1)
tions. Integrated mean square consistency of is equivalent to
this technique is discussed. Experimental
results of using the likelihood functions thus gji(x) (log(fX(x/Hj)/fX (x/Hi))+log(Pj/Pi) > 0,
obtained in the classification of remotely (la)
sensed data are given.

gji(x) is also sometimes called a discriminant
function.

The method of "potential functions" (also called
"kernel functions") for the direct construction For j = 1, ... , M, let there be given the n-
of likelihood functions and discriminant func- vectors (j) (j) (j) (j)
tions has been widely discussed in the literature 1 = col(yll ... n )) 2 "
on statistics and pattern classification (see y()= col( y )  (J)) constituting
for example [4] and the references therein). 3N. N.1 ' YN.n
In what follows, first we review very briefly
this method. Second, we present its integrated- the training set T.(N1 ) belonging to the pattern
mean-square (IMS) consistency and give a formula class Hi. The proSlems to which we will be
for the value of the mesh parameter h(N) (to be addressing are:
defined in section 2) which is optimal with re-
spect to IMS convergence. Next, we discuss the (a) Given T (Nj) construct an estimate
use of multivariate B-splines as potential func- X( (N))
tions, bringing into the discussion the IMS(Nj)) of fx(x/Hi)
consistency criteria mentioned above. Finally, (b) Given Tj(Nj) and Ti(Ni) construct an
we present some of the experimental results ob- estimate
tained when likelihood functions constructed
by means of B-spline potential functions were gji(x;Tj(Nj),Ti(Ni)) of gji(x).
used to classify remotely sensed data pertaining
to the Purdue LARS flight line Cl. For simplicity in notation, from now on we will

drop the superscript and subscript j whenever it
1. Likelihood Functions and Discriminant Func- is clear that we are referring to the estimation
tions in Pattern Classification of a likelihood function pertain .Agto a given

class Hi, and rewrite fX(x/HJ) and fX(x/H3,Tj(Nd))
As a preamble to our results, let us briefly simply as fx(x) and eX(x/T(N)), respectively.
recall the Bayesian solution to the pattern
classification problem. 2. The Method of Potential Functions

Suppose that observations made on patterns, We will now indicate how the method of potential
which are to be classified as pertaining to one functions is used in the solution of problems
of the pattern classes H1, ..., HM , appear as (a) and (b) above.
n-vectors belonging to the real Euclidian space
Rn. Then any given observation x = col (xl, ..., According to this method,in the solution of prob-
xn) may be viewed as a realization of a random lem (a), the estimate of fX(x/T(N)) is constructed
vectdr X = col (X1, :.., Xn). Associated with in the form
each pattern class H3, j = 1, ..., M, there is -1
the conditional probability density function** fX(x/T(N)) = N k 1(xyk)0 (3)

fx(x/HJ), clled the likelihood function for
the class H , and the prior probability Hj for where c(x,z) called a "potential function" or
that class. The Bayes decision rule, which "kernel function" is a real-valued function of
minimizes the probability of misclassification, the n-vectors x and z, satisfying appropriate
consists of classifying any observed x as arising conditions.
from HJ if

* Supported by NASA contract NAS-9-12776 while at Rice University.
+ Supported by the NSF Grant GK-36375.
* Supported by ONR Grant NR-042-283.
** Even though f(x) is the correct notation for the "value" at x of a function f or f(.), we often

use the same notation f(x) for the "function" and "function values" when the meaning is clear from
the context.
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"For the one-dimensional case, i.e. for x and Yk It clearly follows from this definition that our
in RI , Parzen [71 was one of the first investiga- consistency results developed for (3) apply also
tdrs to suggest the construction of a probability to (11).
density function using (3) and for this reason
(3) is often called a Parzen estimator of the 3. Integrated Mean Square Consistency and Opti-
probability density function fx(x). mality

Parzen suggested specifically potential functions The above-mentioned consistency and optimality
of the form results are with respect to the mean square

-1 - error
c(x,z) = h- (N)K(hl (N)(x-z)), (4) xT - (12)

where h(N), is a "mesh parameter", dependent on X X
N, sufficiently small so as to validate the
assumption of fX(x) being nearly constant on for a given x. However, in approximating fXany interval (z-h(N), z+h(N)). Parzen [7] gave one is most likely to have some a priori know-
conditions on K and h(N), which guarantee mean ledge of the "global behavior", like "global
square consistency of (3) for a wide class of smoothness", of the function to be approximated
densities. He also gave a formula for optimal rather than its "local behavior". In such cir-
h(N), i.e. the values of h(N), n = 1, 2, ..., cumstances, the integrated mean square (IMS)
which maximize the rate of convergence of an error criterion in the coice of optimal h(N) be-
approximation to the mean square error to zero. comes more meaningful as we shall explain in

Parzen's results were extended to the n-dimen- section 4. The MS error is defined by

sional case by Murthy [6] and Cacoullos [1] . V(T(N)) = rE(f (x/T(N)) -f(x))2)dx, (13)
Note that in this case, we have in general n X
scalar mesh parameters hl(N), ..., hn(N) and where the integration is performed over Rn.
(4) is replaced by

q(x,z)=(hl(N)h2 (N)...hn(N))-
1 K(H- 1(N)(x-z)), (5) The following result is proved in the Appendix.

where Theorem 1. Suppose
(I) The random samples yl, "'', YN are

independently and identically distributed as X
whose density is fx;

H(N) = Diag(hl(N), ..., hn(N)) (6)
(II) fX E L2(Rn);

However, by suitable normalization, we may make (III) K:R n - R+ (where R+ = set of nonnegative
all hi(N), i = 1, ..., n the same, i. e. real numbers) is such that

hl(N) = h2 (N) = ... = hn(N) = h(N), (7) (111-1) KEL 2 (R

which when substituted in (5) leads to (111-2) n K(x)dx = 1,
R

cp(x,z)=h-n(N)K(h-1(N)(x-z)). (8) (111-3) ess sup K(x) < ,
xE Rn

So from now on, without loss in generality we (111-4) lim llxllK(x) = 0,
will assume equation (7) and equation (8) hold. 1lx l-m2  2

where ixil = (xj2, + ... + xn2 Z, and
Referring next to Problem (b), it is clear that
the above technique can be used to estimate gji(x) (IV) h(N) is such that

directly from the training sets T (N ) and Ti Ni). (IV-1) lim h(N) = 0
In fact, let the elements of T.(N!)UTi(Ni), N-
ordered in any arbitrary way, de labeled Zk,
k = 1, ..., Nj+Ni, and define the function and

(IV-2) lim Nhn(N) =
N-

ji(X,Zk)NiP j(x,Zk)u j(zk)-Nj P i(X,Zk)Ui(zk
Then fx(x/T(N)) is a consistent estimator of

(9) fy(x) in the IMS error sense, that is

where, for = j,i lim V(T(N)) = 0 .

1, if ZkET (NN

it if zkt, (10) We next seek a formula for the value h*(N)
t( k )  (0) of h(N), whick optimizes the IMS rate of con-

0, otherwise. vergence, of f to fX. This is obtained by

Then substituting (3) in (2) and using (9), we modifying Cacoullos' [11 result for the mean

•obtain square convergence case as follows:

N.+N,

,ji (x;T (N j),T(Ni))=(N Ni ] _ ji(XZk) (1U
k=1

2



"Theorem 2. Let the hypotheses of Theorem 1 hold 4. B-Splines as Potential Functions

and assume, in addition, that K is symmetric It is clear from the formulas in (19) and (20)

(i.e. K(-x) = K(x)) and fX is thrice differen- that the choice of the optimal h*(N), and hence

tiable and such that the second partial derivative V*(T(N)), depends on the properties of f and

of fX are in L2(Rn). Then within o(h4(N)) the on the structure of the product kernel K.

IMS error (defined by (13)) is minimized by 2
choosing The L norm of the second derivative of a func-

nIK 2  1 tion represents a measure of the "global smooth-
2 n+4 ness" of the function. In this sense, according

h*(N) = N1 / 4  2 .2 (14) to (22), A (f ) is a monotonically increasing
n n f i function o£ tie "global smoothness" of fX. Thus

Sj=l i xix 2  an a priori knowledge of the smoothness can be
-J incorporated in the formulas (19), (22), and (20)

by assigning a value to

where, for a function g, n  2, 2

Ilglk=( Ig(x) Ikdx) I/k (15) 1 '2
R i=1 2

and in those formulas.
L.j = fn xixjK(x)dx . (16)

In picking K one would like to choose its struc-

The optimal rate of convergence, corresponding ture so that the optimal kernel-dependent rate of

to the choice (14), is 2n convergence A2 (K0) is minimized. Then the

n 4 4choice of the support of K0 represents a compro-

- -- w n n 72f mise between the minimization of its second moment

V*(T(N)) = (4-n+l)n N ij x. and its L2L norm. KO must also be at least as
i=1 j=l i 2 smooth as fX particularly if only a few train-

ing samples are available. Based on these con-

*4 sideration, we suggest for the structure of K

+ o(h*4(N)). (17) a univariate B-spline, and hence for K a pro uct
of n such splines. Such a choice for K0

If, as we shall assume in the following section, constitutes a compromise between a Gaussian
the kernel K has the product form kernel and a square kernel

n iI

K(x) = K0 (xi) , (18) o(x) 1  < 1 (24)

i= 1 Kx , otherwise,
where K is an even one-dimensional kernel, then We note that a multivariate polynomial, as sug-
Theorem 9 further simplifies to: gested by Specht 1101, while certainly adequate

Theorem 3: Under the condition on K just stated, for approximating a large class of discriminant
the results (14) and (17) of the preceding theorem functions given in the form (la), is certainly
assume the forms (19) and (20) below: unsuitable for the representation of K over

the entire Rn since it violates the conditions
1 !1 (III) of Theorem 1.

n4 nIK 2n -n+4

h*(N) = N (19) Let any given component variable x. of x be
4 n fX 2 denoted by . Then a univariate iB-spline of.001 E ~22 degree m-l with support on (0, ) and knots

i 0 <  m , (25)
n 4

. .-l 4 4 is defined by [2,3,9]
V*(T(N) = (4 n+l)n n4 N n4 A(fX)A 2(K) (20)

where Mm() d m- , (26)

0 = x2 K(x)dxi' (21) where

" 2n ) = (F 0)(- 1 )... ( m-) (27)

n n fX (22) and

A (f ) Z g(), if g( ) > 0,
IX i=1 ax s +() (28)

0 , if g() < 0 .

nd4n n If we:(1) assume that the degree of the B-spline
n+4= n+4 (23) is odd, i.e., r m-l = 2k-1, k a positive in-

A2(K0) = 00 2 teger; (2) center the spline about the origin as
required by Theorems 2 and 3; and (3) let the knots

We will call A2 (K0) the optimal kernel-dependent of the spline occur at integer values; then we may

rate of convergence since it represents the part obtain the B-spline representation for KO (see

of the right side of (20) which depends on K0  [91 k .+k 2k
We omit .proofs of theorems 2 and 3 above since KO(M) = Mr+ 1( )= - E (-1) ( ), (29)

they represent straightforward extensions of those =-k t+k +

in [11.



where, as indicated above, ,n= r+1l = 2k N N
= (y , (35)

Substituting (29) in (21), (23) and the. (19) and i=
(20), we obtain the formula for optimal h*(N)
and the optimal kernel-dependent rate of conver- where the superscript T denotes the transpose.
gence A2 (K0): Then (,;x) will be called the "sample

normal density".

- 144n(M (0))n t44 The simulation results mentioned above are shown

h*(N) = N n 2 (30) in Figs. 1 through 6.

m i= 1 7xiLXJ Fig. 1 is a graphic display of the bimodal

ad 2 density
and

2n/(+4) 4n2n+4) fx(x) = p9 (,'Z;x) + (l-p)7?(P2 ',;x) (36)

2(K0 = ym ' (31)
2  ) (31) with the mixing parameter p =.5, and p~ =

where col(-2,0), p2 = col(6,0) and

r1 -+ +1 2 (r+l) .2r+1 Z = (5.75 4.34(3r+l .2 (37)

m (2rl) E (1) (32) 
4 . 34  6.64

j=1 +r+) Figs. 2 and 3 are displays of fx(x/T(N))

obtained by the B-spline potential function
Numerical values for .(K0 ) given by (31), for algorithm corresponding respectively to N=50
r = 1,3, and 5, are listed in Table I. and N = 300 samples from the above density.

TABLE I Fig. 4 shows the sample normal density approxi-
mation of the same density on the basis of 50

r A2 (Ko) samples.

1 .353075
3 .357836 To show the effect of the increase in dimension-

5 .359683 ality on the performance of our algorithm, we
present in Figs. 5 and 6 the cross-sections

Let 71(p,E;x) denote the value at x of the through the x -axis of the density estimates,
normal density with mean p and covariance matrix obtained by the B-spline potential function

E . For K (x) = 7?(0,o 2 ;x) we have algorithm, of the bimodal density (36) on four-
0 and six-dimensional spaces under the conditions

117 (2)(0,O2; .) 2 = (3/8T-. 5 - 5 ) (33) given in those figures.

In all this work we used cubic B-splines with
Using (33), with a = f, in (30), we get the the mesh parameter h*(N) equal to the second
formulas for h*(N), for any dimension n and
r = 1,3, presented in Table II.

TABLE II From the above few results we ccncli de that the
r { h*(N) B-spline potential function algorithm appears

r to fare well in the construction of likelihood

S 136n(.66666)n 11/+ - 1An+4) functions from only a modest num :r of samples
! 1 [ .2115 J N and with densities that are not necessarily-uni-

n. 5 1 modal and on spaces that are not necessarily of
9n(.49365)n I/(n+4) too low a dimension.

1 3 .2115 N

6. Application to Remote Sensing

5. Computer Simulation Results To test the effectiveness of the B-spline
potential function algorithm for classification,

In this section we present some of the computer discriminant functions were obtained from the
simulation results performed on the Rice Univer- likelihood functions generated by the algorithm,
sity IBM 370/155 digital computer for the purpose for Bayesian classification of agricultural
of testing how well the B-spline potential function crops. The algorithm was based on cubic B-splines
algorithm performs in the construction of likeli- chosen as in section 4 of this paper, and was
hood functions. implemented in the LARSYSAA VERSION 2 ' " . as

developed at the Laboratory for Applicationsof
Given a set of samples T(N) = (Yl,... yn ) where Remote Sensing, Purdue University, Lafayette,
each yi is an independent realization of a Indiana. We also performed classification using
random variable X with density f , let the sample normal densities as likelihood functions.
sample mean : and sample covariance matrix Z (See the beginning of section 5 for the defini-
be defined in the usual way, i.e. tion of "sample normal density.")

=N E i (34) The data used in our experiments pertained to
i=l the Purdue LARS flight line Cl, which has been

and widely employed for testing algorithms on
remote sensing. This data consists of the output
of a twelve channel spectrometer which analyzes
the reflected radiance from the object being

4



sensed. Let a given crop field belonging, say, is also a pleasure to acknowledge a helpful
to the pattern class Hi, be discretized (parti- comment from Professor Polking on the proof of
tioned) into N points, called "resolution Theorem 1 and the encouragement received in
elements". The spectrometer maps each resolu- carrying out this research from Dr. M. S. Lynn,
tion ele ent intoa 12-tupl1 of real numbers, Director of the Rice University Institute for
say yk= col(y, 1 ,' * ), and the whole Computer Services and Applications.
field proy es N lYeh 12- mensional vector
samples y ,... which can be used to train Appendix
a classifier in the acquisition of the likelihood
function corresponding to HJ . Proof of Theorem 1

Our first example is designed to show the poor For notational convenience let
results obtained when normality is assumed on K(x) = h-nK(h- 1x). (A-)
bimodal data. In this example, we used data from
only one channel, namely Channel 1 (.40p to .4 4 p), Then, clearly* (see for example [5, p. 172]),
to classify data c rresponding to the two bimodal
pattern classes: H: RED CLOVER HAY and CORNI; E2(f (x/T(N)) - f (x))2)
and H : BARE SOIL1 and ALFALFA1. Figs. 7 and 8 X X
show the histograms of the classes. The per- 2 ^
centages of the number of correct classifications, =Var(fx(x/T(N))) + B2(f(x/T(N))), (A-2)
for a typicil set of observations corresponding
to HI and H , are indicated in Table III, both where
for the algorithm presented here and for the Var(f (x/T(N)) = E f2(x/T(N)))
sample normal classification algorithm. X

TABLE III - E2 f(x/T(N))) (A-3)
and

Potential Sample B(f (x/T(N))) Ef x(X/T(N)) - f (x).(A-4)
Function Normal X X X
Algorithm Algorithm Hence it follows that

H 86 26 limllEf(f (x/T(N)) - fX(x))2311
H2  98 .3 1

It is clear that the much superior performance = limIIVar(fx(x/T(N)))l11
of the potential function algorithm in relation N-
to the sample normal algorithm may be attributed 2
to the bi-modality of the data. + limlIB(f (x/T(N))) 2 . (A-5)

N-m
Our second example is for the purpose of testing The proof will consist of showing that each term
the effectiveness of the potential function algo- on the right side of (A-5) tends to zero.
rithm for normal data. In this example, we used
3 channels, namely Channels 1 (.40p - .44 ), 10 Since the random variables Y., i = 1,...,N
(H66 - .72), and 12 (.60O - 1.00p), to classify are each independently distributed as X, we have.H: SOYBEANS, H2 : CORN, H3 : OATS, and H4 : WHEAT. in accordance with (3 ), that
The percentages of correct classifications are
displayed in Table IV, for H1 and H2 . Ex(/T(N))=ElfX(x/T(N))) = E(K(x - X)}, (A-6)

TABLE IV and 2
Var(fl(x/T(N))) = N-lar(Kh(x-X)). (A-7)

Potential Sample
Function Normal Now
Algorithm Algorithm Kh(x)*f(X) TnKh(x-z)f(z)dz

H1  97 99 R

H2 94% 99% = EKh(x-X))

Even though the efficiency of classification by = Eff(x/T(N))}, (A-8)
the potential function algorithm is lower than by where, in going from the third to the last
the sample normal, we note that the ability of member, we have used (A-6).
the potential function algorithm to classify
effectively data that is normal.is comparable Similarly,
with the sample normal in quality of classifica- --
tion. *In this Appendix, we use capital letters for

symbols denoting random variables and corres-
Acknowledgement ponding small letters for realizations of these

random variables. In (A-2), f (x/T(N)) is toWe are much indebted to Dr. D. Van Rooy for im- be regarded as a function of the random variables
plementing the classification algorithm into the Y 1,... ,Y the realizations of which are the
LARSYSAA system and to Mr. Ken Baker of the training samples y1,...,yN
Lyndon B. Johnson Space Center for his advice
-on the remote sensing problem investigated. It
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2(x*) (x ) = Ef(2(x-X)) . (A-9) BIBLIOGRAPHY

Hence, from (A-7), using (A-8) and (A-9) we get [1] Cacoullos,. T., Estimation of a Multivariate

ar(f )ar(fx(x/T(N)))dx Density, Annals of the Institute of Statistical

Var((x/(N))) = RnVar( ( x / T ( N ) ) ) d x  Mathematics (Tokyo), Volume 18, pp. 179-189,
1966.

= n[E( (x -X )) - E2[Kh(x -X) ]] dx [2] Curry, H.B., and Schoenberg, I.J., On Polya
Frequency Functions IV. The Fundamental. Spline

2 2 Functions and their Limits, Journal d'Analyse
= IE(Kh(x-X)1}I 1 - IIE(Kh(x-X)}" 2  Mathematique (Jerusalem), Volume 17, pp. 71-

107, 1966.

(Nhn)-111(K 2 (x))h * fx(X)1 [3] de Boor, C., Package for Calculating with B-
splines, Mathematics Research Center (Madison,

-N-llKh(x) * fX(x)112 (A-10) Wisconsin), Technical Summary Report #13332* X ,A-1) (April), 1973.

where [4] Fu, K.S., Sequential Methods in Pattern
2 -nK2 h ). Recognition and Machine Learning, Academic

(K (x))h = h-K 2 (h-x). (A-1) Press (New York) 1968.

By Young's inequality (see [81, p. 148), we [51 Mood, A.M., and Graybill, F.A., Introduction
have to the Theory of Statistics, McGraw-Hill

(New York) 1963.

(IKbx) * fX() I2 - fx(X)I 2 (A-12) L
6] Murthy, V.K., Non-Parametric Estimation of

since Multivariate Densities with Applications,
2 Multivariate Analysis II, International Sympo-

iKh(x)i 11 , (A-13) sium on Multivariate Analysis at Wright State

University (Dayton, Ohio), Academic Press
and again by Young's inequality (New York), 1966.

II(K2(x))h * f(X)I1 <jj(K2(x))hlll (A-14) [7] Parzen, E., On Estimation of Probability
Density Function and Mode, The Annals of

since Mathematical Statistics, (Baltimore, Maryland)

If (x)11 = 1 . (A-15) Volume 33, # 3(September), pp. 1065-1076,1962.

[8] Rudin, W., Real and Complex Analysis, McGraw-
By a change of variables we obtain Hill Book Company (New York), 1966.

II(K2(x))h = IlK(x) 2 (A-16) [9] Schoenberg, I.J., Cardinal Interpolation and

h 1 2 Spline Functions, Journal of Approximation

and so (A-14) becomes Theory, (New York), Volume 2, pp. 167-206,
1969.

l(K 2 (x))h * fx(x)01 < Il(x)ii . (A-17) [101 Specht, D.F., Generation of Polynomial Dis-
criminant Functions for Pattern Recognition,

Using the triangle inequality on the right side Institute of Electrical and Electronic
of (A-10), and then substituting into it (-17) Engineers Transactions on Eleccronic Computers
and (A-12), we obtain (New York), Volume EC-16, # 3,(June) 1967.

lIVar(f (x/T(N))I 1 < (Nhn -K(x) 12  [111 Stein, E.M., Singular Integrals and Differen-
tiability Properties of Functions, Princeton

+ N- Ifx(x)2I . (A-18) University Press (Princeton, N.J.), 1970.

Finally, resorting to the hypotheses II, III-I,
and IV-2 of the theorem, we have

limiiVar(f(x/T(N))) I1 = 0 . (A-19)
N-=

Now consider the bias term (A-4) and use (A-8)
to write it in the form

B(fx(xlT(N))) = Kh(x) * fX(x) - fx(x). (A-20)

Then by Theorem 2, Part (c) in Stein [11, p.62]
we get

limilB(fx(x/T(N)))1 2 = 0. (A-21)
N-

Equations (A-5), (A-19), and (A-21) show that

f (x/T(N)) -is a consistent estimator of fx(x)
in the IMS sense.
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